# Technical manual for the Omron 3G3FV flux vector inverter 

(For open loop operation with Interflite software control)

Issue 2 - 05/12/2023 - Last technical change 20/07/2006

# WE RESERVE THE RIGHT TO ALTER WITHOUT GIVING PRIOR NOTICE TECHNICAL DATA, DIMENSIONS AND WEIGHTS DESCRIBED IN THIS MANUAL 

## 处

## CONTENTS.

A. Introduction
B. Sequence of events
C. Input and output connections
D. Control Panel
E. Parameters and description
F. Monitoring
G. Tuning
H. Commissioning procedure
I. Ride quality adjustments
J. Fault finding
K. Modified constants

Page 3
Page 4
Page 5

Pages 6-7

Pages 8-15
Pages 16-19

Pages 20-22
Pages 23-25

Page 26

Pages 27-32

Pages 33-34

## SECTION A

## Introduction

The ILE Variable Frequency Control inverter for squirrel cage motors utilises state of the art electronics, to control an AC Induction Motor's speed and torque. In the lift application there is no need for a speed feedback element up to $1.0 \mathrm{~m} / \mathrm{s}$.

The system enhances single speed lifts with variable speed performance for new and existing lifts, whilst decreasing wasteful heat loss within the motor typical of Variable Voltage Thyristor Controlled regulator systems.

This manual will hopefully give a summarised version of the Omron control options and assist in setting up.
Further, more detailed information is available in the Omron 3G3FV programming and installation manual. We suggest that, for a first time user, this information is studied.

## SECTION B

## Sequence of Events

## Starting

Starting is initiated by the receipt of either an UP or a DOWN direction signal.
Acknowledgement of the direction signal, is fed back to the processor, via the inverter's RUN contact in the STR feedback line. The direction relays, also energise the STR relay, which pulls in the MC contactors that allow power to reach the motor. The OP2 output then energises the BKC relay that lifts the mechanical brake and completes the STR feedback input on the processor board, the speed signals are then given to the drive via the processor outputs OP6, 7, 8 . The speed inputs follow the OP2 output after an interval adjustable via the BL rotary switch on the IFIODTC board. This switch is normally set to (2). This function is to aid a smooth start by allowing the regulator to hold the load of the lift electrically before starting the journey. The lift then accelerates to high speed (or any other pre-selected speed).
The READY contact in the BKC line is energised when the inverter is in operational status. The FLT contact is a fault contact, which is energised when there is a fault condition on the inverter.

Stopping

Consider the lift is travelling at high speed. On receipt of a slowing signal the high speed signal OP6 is removed from the regulator. The lift decelerates, and targets for levelling speed, under the influence of the deceleration and s-curve parameters until levelling speed is achieved. Upon reaching the stopping zone, MSU and MSD operate, either directly into the microprocessor board, or via relays, this removes OP8. The following sequence then occurs: -
a) The regulator decelerates towards zero speed
b) The mechanical brake is activated by OP2, this time is adjustable via the rotary switch BR on the IF10 DTC to give a smooth stop.
c) The OP3 run signal then drops 0.5 seconds after OP2 cutting off the transistors in the inverter via terminal which is configured as a baseblock.
c) Two seconds later the STR timed contact releases the MC and MC1 contactors, removing the 3 phase from the motor. The OP1 contact on the IFIO DTC acts as a safety backup and will release after 2 seconds. This delay allows the current on both the contactor contacts and regulator transistors to decay to zero before switching. This sequence of events allows a smooth stop and prolongs both contactor and transistor life expectancy.

## SECTION C.

## Input and output connections

The following is a list of the interflite outputs that interface with the inverter: -

| Output |  |
| :--- | :--- |
| OP3 |  |
| Rescription command |  |
| OP6 |  |
| Oulti-step speed reference 3 |  |
| OP7 |  |
| OP8 |  |
| Multi-step speed reference 2 |  |
| Oulti-step speed reference 1 |  |

The following is a list of the inverter inputs: -
Terminal Description
1 Down enable
2 Up enable
$5 \quad$ Multi-step speed reference 1
$6 \quad$ Multi-step speed reference 2
$7 \quad$ Multi-step speed reference 3
8 Baseblock (normally closed, when open circuit the transistors are switched off)
11 Supply

| 7 | 6 | 5 | Speed |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | Orpm |
| 0 | 0 | 1 | Levelling speed |
| 0 | 1 | 0 | Orpm |
| 0 | 1 | 1 | Test speed |
| 1 | 0 | 0 | 0 rpm |
| 1 | 0 | 1 | High speed |
| 1 | 1 | 0 | 0 rpm |
| 1 | 1 | 1 | Orpm |

Speed Reference
d1-01 Frequency refl
d1-02 Frequency ref2
d1-03 Frequency ref3
d1-04 Frequency ref4
d1-05 Frequency ref5
d1-06 Frequency ref6
d1-07 Frequency ref7
d1-08 Frequency ref8

## SECTION D

## Control panel

The removable keypad is the device used for controlling and programming the Omron 3G3FV. The control panel has 11 keys and the display has 2 lines. The Control Panel can be attached directly to the inverter or it can be mounted externally. To change a parameter, enter the group where the parameter you wish to change is then step up or down to the parameter. Then press the enter key, and the far left hand unit will flash, by pressing the reset key you can move along the units to the one you wish to change the value of. Then by using the arrow keys the value can be adjusted to the new value required, press the enter button again to enter the new value and 'entry accepted' will be displayed.



## SECTION E

## Parameters and description

The following table is the list of all the default parameter settings for the Omron inverter. Use these tables as reference when you are customising macros for your Omron application. The modified constants section at the end of the manual is a list of all the parameters that have been changed from this default list for each individual application.

## PARAMETERS

## INITIALISE

## A:-

1.00 LANGUAGE
1.01 CONSTANT ACCESS LEVEL
1.02 INITIALIZE PARAMETERS
1.03 CONTROL METHOD
1.04 ENTER PASSWORD
1.05 SELECT PASSWORD

FACTORY
SETTING
UNIT

## PROGRAMMING

## B:- APPLICATIONS

1.00 SEQUENCE
1.01 REFERENCE SOURCE

Operator
1
1.02 RUN SOURCE
1.03 STOPPING METHOD
1.04 REVERSE OPER
1.06 CNTL INPUT SCANS
1.07 LOC/REM RUN SEL
2.00 DC BRAKING
2.01 DC INJ START FREQ
2.02 DC INJ CURRENT

Terminals (D) 1
Ramp to Stop (D) 0
Enabled (D) 0
5ms-2scans (D) 1
Cycle ext Run (D) 0
2.03 DC INJ TIME @ START
0.5
2.04 DC INJ TIME @ STOP
0.0 (D)
3.00 SPEED SEARCH
3.01 SPDSRCH AT START
3.02 SPDSRCH CURRENT

Disabled (D)
0
3.03 SPDSRCH DEC TIME

150 (D)
4.00 DELAY TIMERS
4.01 DELAY-ON TIMER
4.02 DELAY-OFF TIMER
0.0 (D)
0.0 (D)

PARAMETERS
FACTORY

## SETTING

## UNIT

5.00 PID CONTROL
5.01 PID MODE

Disabled (D)
0
5.02 PID GAIN
5.03 PID 1 TIME
5.04 PID 2 LIMIT
5.05 PID D TIME

1 (D)
5.06 PID LIMIT
5.07 PID OFFSET
5.08 PID DELAY TIME
6.00 REFERENCE HOLD
6.01 DWELL FREQ @ START
6.02 DWELL TIME @ START
6.03 DWELL FREQ @ STOP

1 (D)
100 (D)
0 (D)
100 (D)
0 (D)
0 (D)
6.04 DWELL TIME @ STOP
8.00 ENERGY SAVING
8.01 ENERGY SAVING GAIN 80(D)
8.02 ENERGY SAVING START FREQ 0(D)

## C:- TUNING

1.00 ACCEL/DECEL
1.01 ACCEL TIME $1 \quad 10$
1.02 DECEL TIME $1 \quad 10$
1.03 ACCEL TIME 2 10(D)
1.04 DECEL TIME 2 10(D)
1.05 ACCEL TIME 3 10(D)
1.06 DECEL TIME 3 10(10)
1.07 ACCEL TIME 4 10(D)
1.08 DECEL TIME 4 10(D)
1.09 FAST STOP TIME 10(D)
1.10 ACC/DEC UNITS 0.1(D)
1.11 ACC/DEC SW FREQ 0(D)
2.00 S-CURVE ACC/DEC
2.01 SCRV ACC @ START 0.2
2.02 SCRV ACC @ END 0.2
2.03 SCRV DEC @ START 0.2
2.04 SCRV DEC @ END 0.0
3.00 MOTOR COMP SLIP
3.01 SLIP COMP GAIN 0
3.02 SLIP COMP TIME DELAY 2000
3.03 SLIP COMP LIMIT 200
3.04 SLIP COMP REGEN Disabled

0

PARAMETERS
FACTORY

## SETTING

UNIT

### 4.00 TORQUE COMP

4.01 TORQ COMP GAIN
4.02 TORQ COMP TIME
6.00 CARRIER FREQ
6.01 CARRIER FREQ MAX
6.02 CARRIER FREQ MIN
6.03 CARRIER FREQ GAIN
7.00 HUNTING PREV
7.01 HUNT PREV SELECT
7.02 HUNT PREV GAIN

D:- REFERENCE
1.00 PRESET REFERENCE
1.01 REFERENCE 1
1.02 REFERENCE 2
1.03 REFERENCE 3
1.04 REFERENCE 4
1.05 REFERENCE 5
1.06 REFERENCE 6
1.07 REFERENCE 7
1.08 REFERENCE 8
1.09 JOG REFERENCE
2.00 REFERENCE LIMITS
2.01 REF UPPER LIMIT
2.02 REF LOWER LIMIT
3.00 JUMP FREQUENCIES
3.01 JUMP FREQ 1
3.02 JUMP FREQ 2
3.03 JUMP FREQ 3
3.04 JUMP BANDWIDTH
4.00 SEQUENCE
4.01 MOP REF MEMORY
4.02 TRIM CONTROL LVL

Disabled (D)
(Varies)
(Varies)
10 (D)
0 (D)
Enabled (D)
1
1 (D)

0 (D)
0
0 (D)
0
0 (D)
0
0 (D)
0 (D)
6.0 (D)

100 (D)
0 (D)
0 (D)
0 (D)
0 (D)
1.0 (D)

## SETTING

## UNIT

## E:- MOTOR

1.00 V/F PATTERN
1.01 INPUT VOLTAGE
1.02 MOTOR SELECTION
1.03 V/F SELECTION
1.04 MAX FREQUENCY
1.05 MAX VOLTAGE
1.06 BASE FREQUENCY
1.07 MID FREQUENCY A
1.08 MID VOLTAGE A
1.09 MIN FREQUENCY
1.10 MIN VOLTAGE
1.11 MID FREQUENCY B
1.12 MID VOLTAGE B
1.13 BASE VOLTAGE
2.00 MOTOR SETUP
2.01 MOTOR RATED FLA
2.02 MOTOR RATED SLIP
2.03 NO LOAD CURRENT
2.05 TERM RESISTANCE
3.00 MOTOR 2 CTL METH
3.01 CONTROL METHOD
4.00 V/F PATTERN 2
4.01 V/F 2 MAX FREQ
4.02 V/F 2 MAX VOLTAGE
4.03 V/F 2 BASE FREQ
4.04 V/F 2 MID FREQ
4.05 V/F 2 MID VOLTAGE
4.06 V/F 2 MIN FREQ
4.07 V/F 2 MIN VOLTAGE
5.00 MOTOR 2 SETUP
5.01 MOTOR 2 RATED FLA
5.02 MOTOR 2 SLIP FREQ
5.03 MOTOR 2 NO-LOAD 1
5.05 MOTOR 2 TERM OHMS

F:- OPTIONS
2.00 AI-14 SETUP
2.01 AI-14 INPUT SEL
3.00 DI-08, 16 SETUP
3.01 PDI INPUT

PARAMETERS

400
Standard fan cooled (D) 0
Custom user-set patterns (D) F
50 (D)
400
User set
2.5 (D) (Varies)

30 (D) (Varies)
1.2 (D) (Varies)

18 (D) (Varies)
0 (D)
0 (D)
User set

User set
User set
User set
User Set

Open loop vector 2
60 (D)
400 (D)
60 (D)
2.5 (D)
(Varies)
22 (D)
(Varies)
0.4 (D)
(Varies)
4 (D)
31.1 (D) (Varies)
2.5 (D) (Varies)
14.1 (D) (Varies)
10.1 (D) (Varies)

3 channel individual (D) 0
BCD $1 \%$ unit (D) 0

FACTORY
SETTING
UNIT

| $\mathbf{4 . 0 0}$ | AO-08, 12 SETUP |  |
| :--- | :--- | :--- |
| 4.01 | A0 CH1 SELECT | 2 (D) |
| 4.02 | A0 CH1 GAIN | 1.00 (D) |
| 4.03 | A0 CH2 SELECT | 3 (D) |
| 4.04 | A0 CH2 GAIN | 0.5 (D) |
| $\mathbf{5 . 0 0}$ | DO-02 SETUP | 0 (D) |
| 5.01 | DO-02 CH1 SELECT | 1 (D) |
| 5.02 | DO-02 CH2 SELECT |  |
| $\mathbf{6 . 0 0}$ | DO-08 SETUP | 0 (D) |
| 6.01 | DO-08 SELECTION |  |
| $\mathbf{7 . 0 0}$ | PO-36F SETUP | 1 (D) |
| 7.01 | PO-36F SELECTION | 1 (D) |
| $\mathbf{8 . 0 0}$ | E-15 SETUP |  |
| 8.01 | E-15 DET SEL | 0 (D) |
| $\mathbf{9 . 0 0}$ | EFO SETUP | 0 (D) |
| 9.01 | EFO SELECTION | 1 (D) |
| 9.02 | FO DTCT SEL | 0 (D) |
| 9.03 | EFO FAULT SEL |  |
| 9.04 | TRACE SAMPLE TIM |  |

## H:- TERMINALS

1.00 DIGITAL INPUTS
1.01 TERMINAL 3 SEL
1.02 TERMINAL 4 SEL
1.03 TERMINAL 5 SEL
1.04 TERMINAL 6 SEL
1.05 TERMINAL 7 SEL
1.06 TERMINAL 8 SEL
2.00 DIGITAL OUTPUTS
2.01 TERMINAL 9-10
2.02 TERMINAL 25-27
2.03 TERMINAL 26-27

External fault 24
Fault reset 14
Multi-step speed ref 1 (D) 3
Multi-step speed ref 2 (D) 4
Jog frequency ref 6
Baseblock NO 8
During run $1 \quad 0$
Excitation 1
Frequency agree 1 (D) 2

### 3.00 ANALOGUE INPUTS

3.01 TERM 13 SIGNAL 0 (D)
3.02 TERM 13 GAIN
3.03 TERM 13 BIAS
3.04 TERM 16 SIGNAL
3.05 TERM 16 SEL
3.06 TERM 16 GAIN
3.07 TERM 16 BIAS
3.08 TERM 14 SIGNAL
3.09 TERM 14 SEL
3.10 TERM 14 GAIN
3.11 TERM 14 BIAS
3.12 FILTER AVG TIME
4.00 ANALOG OUTPUTS
4.01 TERMINAL 21 SEL
4.02 TERMINAL 21 GAIN

100 (D)
0 (D)
$0(\mathrm{D})$
Auxiliary frequency ref 0
100 (D)
0 (D)
2 (D)
Not used (D) 1F
100 (D)
0 (D)
0 (D)
4.03 TERMINAL 21 BIAS

2 (D)
1 (D)
4.04 TERMINAL 23 SEL
4.05 TERMINAL 23 GAIN
4.06 TERMINAL 23 BIAS
4.07 AO LEVEL SELECT

0 (D)
3 (D)
0.5 (D)

0 (D)
5.00 SERIAL COM SETUP
5.01 SERIAL COMM ADR

0 (D)
5.02 SERIAL BAUD RATE

1F (D)
5.03 SERIAL COM SEL

3 (D)
5.04 SERIAL FAULT SEL

0 (D)
5.05 SERIAL FLT DTCT

3 (D)

## L:- PROTECTION

1.00 MOTOR OVERLOAD PROTECTION
1.01 MOL FAULT SEL Enabled (D) 1
1.02 MOL TIME CONST 1.0
2.00 POWER LOSS RIDE-THROUGH PARAMETERS
2.01 PWRL SELECTION 0 (D)
2.02 PWRL RIDETHRU T

1 (D)
2.03 PWRL BASEBLOCK T
2.04 PWRL V/F RAMP T
0.5 (D)
(Varies)
2.05 PUV DET LEVEL
0.3 (D)
(Varies)
(Varies)

PARAMETERS
FACTORY
SETTING
UNIT
3.00 STALL PREVENTION
3.01 STALLP ACCEL SEL
3.02 STALLP ACCEL LVL
3.03 STALLP CHP LEVEL
3.04 STALLP DECEL SEL
3.05 STALLP RUN SEL
3.06 STALLP RUN LVL
4.00 SPEED/FREQUENCY DETECTION
4.01 SPD AGREE LEVEL
4.02 SPD AGREE WIDTH
4.03 SPD AGREE LEVEL+/-
4.04 SPD AGREE WIDTH +/-

Enabled (D)

1
1 (D)
160 (D)
4.05 REF LOSS SEL
5.00 FAULT RESET/RESTART
5.01 NUM OF RESTARTS
5.02 RESTART SEL

0
6.00 OVERTORQUE DETECTION
6.01 TORQ DET 1 SEL
6.02 TORQ DET 1 LVL
6.03 TORQ DET 1 TIME
6.04 TORQ DET 2 SEL
6.05 TORQ DET 2 LVL

0 (D)
2 (D)
0(D)
2(D)
0 (D)
6.06 TORQ DET 2 TIME
8.00 HARDWARE PROTECTION
8.01 DB RESIST PROT
8.02 OH PRE-ALARM LVL
8.03 OH PRE-ALARM SEL
8.05 PH LOSS IN SEL
8.07 PH LOSS OUT SEL
8.10 GF FAULT SEL

Disabled
0
150 (D)
0.1

Disabled (D) 0
150 (D)
0.1 (D)

Disabled (D) 0
95 (D)
Continue operation (D) 3
Disabled (D) 0
Disabled (D) 0
Enabled (D) 1

## O:- OPERATOR

1.00 DISPLAY SELECTION
1.01 MONITOR SELECT
1.02 POWER-ON MONITOR
1.03 DISPLAY SCALING

6 (D)
1.05 ADDRESS DISPLAY

Frequency reference (D) 1
0 (D)
0 (D)
2.00 OPERATOR KEY FUNCTION SELECTION
2.01 LOCAL/REMOTE KEY

Enabled (D) 12.02 OPERATOR STOP KEY2.03 USER DEFAULT2.04 INVERTER MODEL \#2.05 OPERATOR M.O.P
2.06 OPER DETECTION
2.07 ELAPSED TIME SET
2.08 ELAPSED TIME RUN
2.09 INIT MODE SEL

Enabled (D) $\quad 1$
Store not set (D) 0
22 (D)
Enter key needed (D)
(Varies)
Disabled (D) 0
0 (D)
Cumulative power on (D) 0
2 (D)

## SECTION F

## Monitoring

The following describes the Monitoring Signals. To put the Omron inverter in the ready to run state whereby the unit is controlled by the ILE controller the MENU then ENTER buttons are pressed. The monitoring section is entered by pressing the up arrow until you come to FUNCTION U1 MONITOR then press the enter button to enter this mode.

U1-05 SPEED
U1-02 FREQUENCY

U1-03 CURRENT

U1-09 TORQUE

## U1-08 POWER

U1-07 DC BUS VOLTAGE V

U1-06 OUTPUT VOLTAGE

## U1-13 OP HOUR COUNTER

U1-10 I/P Terminals

Displays the actual speed of the motor, as calculated by the inverter. The speed is displayed in Hz .

Displays the output frequency $(\mathrm{Hz})$ applied to the motor, as calculated by the inverter.

Displays the motor current, as measured by the inverter.

Displays the motor torque in per cent of the rated motor torque, as calculated by the inverter.

Displays the motor power.

Displays the DC bus voltage, as measured in the inverter. The voltage is displayed in Volts DC.

Displays the motor voltage, as calculated by the inverter.

This Actual Signal is an elapsed-time indicator. It counts the time the inverter has a run command, and is not in a fault state. The counted time cannot be reset.

Status of the digital inputs. If the input is energised the display will indicate 1 . If the input is not energised, the display will be 0 .

Status of the three outputs. 1 indicates that the $\mathrm{O} / \mathrm{P}$ is energised and 0 indicates that the $0 / \mathrm{P}$ is de-energised.


## SECTION G

## Tuning

In VF mode the Omron inverter is manually tuned to give the desired performance from the inverter. The parameters to set are: -

E 1-04 Maximum Frequency 50 Hz
E 1-05 Maximum Voltage 415 V
E 1-06 Base Frequency As motor data plate
E 1-13 Base Voltage As motor data plate
E 2-01 Motor Rated FLA As motor data plate
E 2-02 Motor Rated Slip ((Rated RPM—Nameplate RPM)/Rated RPM)*50 in Hz
E 2-03 No Load Current Measure empty car up current and set 1 Amp higher
E 2-05 Term Resistance Set to $75 \%$ of measured resistance between two of the motor phases
E2-01 Motor Rated Current. f

$\stackrel{3}{4}$

$$
\text { Set E2.05 to }(3.05-0.45) \times 0.75=1.95 \text { ohms. }
$$

E2.03 No.load Current.


 Measure the resistance between two
phases of the motor short meter leads
together first so lead resistance can be
subtracted set to about $75 \%$ of the value
measured.

$$
\begin{aligned}
& \text { e.g. Meter Lead resistance 0.45 onms. } \\
& \text { phase-to-phase resistance } 3.05 \text { onms. }
\end{aligned}
$$

## SECTION H

## Commissioning procedure

N.B Commissioning procedure is to be carried out by competent personnel only.

# WARNING : DO NOT TURN POWER ON \& OFF MORE THAN 5 TIMES EVERY 15 MINUTES OR INTERNAL COMPONENTS MAY BE DAMAGED !!! 

Equipment Required.

1. A Tachometer.
2. An A.C current meter. (Moving coil, not digital)

## Pre Switch On Checks.

1. Check all site wiring and mains cable rating are correct.
2. Check the installation is in conformance with the EMC standards.
3. Ensure the lift is counter balanced correctly.
4. Ensure the lift doors cannot open (this can be done by switching on DIL switch SP1 and PRPTT).

Speed settings.
NOTE: ALL SPEED SETTINGS ARE IN Hz NOT RPM.

1. Simulate the Test Up button, check the lift runs in the UP Direction on test speed and the UP contactor is energised. If the lift runs DN reverse two of the motor phases and retest.
2. Simulate a Test Dn button and check the lift moves DN at test speed and the speed is the desired value, if not adjust to suit.
3. Place the lift empty car at the bottom floor, Switch the lift to NORMAL and run the lift UP in high speed, and ensure the lift slows into floor correctly.
4. If the speeds are incorrect adjust the parameters after the lift has stopped and repeat step 4.
5. Place the lift empty car at the top floor and run the lift DN, ensure the high speed is the same as the UP direction, if not refer to Section I.
6. Check high speed in the UP direction and set to contract speed ensuring the lift slows and levels OK.
7. If the lift overshoots floor level or has a long levelling time into floor then adjust the slowing distance combined with deceleration and the s curves, as illustrated overleaf, to acquire a reasonable comfort level with a minimum levelling time.
8. The BR, brake release switch on the IFIO board can be adjusted to give a delay on the brake releasing or release it earlier.
13.Place the lift empty car at the top floor and run the lift DN in high speed, ensure when the lift slows the lift levelling speed is equal in the UP and DN direction, if not refer to Section I.

## Setting the acceleration and starting.

1. Run the lift and note the acceleration rate.
2. Adjust the Acceleration Time 1 and the s-curves as illustrated overleaf parameter for the desired acceleration that is required.
3. On starting ensure the brake lifts and the lift accelerates towards the desired speed. If the motor
tries to drive against the brake then increase the Brake Lifted (BL) switch on IFIO board.
4. If the lift rolls back decrease the BL switch until the lift just starts to accelerate as the brake is released.

Stall test

1. Disconnect the brake and isolate. Switch the lift to test and switch on the controller.
2. Place the clamp meter on a phase of the incoming mains.
3. Simulate the test up push and the meter should be showing more than $1.75 * \mathrm{flc}$. If the meter is showing 1.75 * flc or more, the regulator trips in the time specified in parameter L6-03. To reset switch the controller off then on.
4. Repeat in the DN direction.
5. Reconnect the brake.
N.B. To reset the regulator after a fault press the RESET or switch the panel off for at least 30 sec then on again.

After commissioning run the lift for at least 1 hour and ensure floor levels are consistent and the lift performs correctly.


## SECTION I

## Ride quality adjustments

The following parameters show how the performance of the inverter can be improved to suit individual applications.

Slip Comp Gain C3-01 can be adjusted in steps of 0.1 to equalise the levelling speeds in the up and down direction, there is a desired maximum setting of 2.0 and a minimum setting of 0.5 setting this value too high will lead to vibration.

Adjusting the slip-compensation delay time C3-02 will influence the time taken before the drive compensates its output frequency under increasing slip, thereby minimising under-speeding (particularly during empty car down conditions). Reducing this value gives more response to load changes; increasing will directly dampen the response of the slip compensation circuit within the inverter overcoming additional torque pulsation resulting from slip comp during regeneration enabled C3-04. Adjust in 10 mS steps, adjusting too low will give oscillations empty car up.

Torque Comp Gain C4-01 can be adjusted to a maximum of 1.2 if absolutely necessary. This adjusts levels of starting torque. Reduce value to overcome vibration during accel / decel, particularly during car up running

Torque Comp Time C4-02 Increase this value if hunting occurs at low-speed (maximum value 200).

Motor Rated slip E2-02 can be increased to induce more slip and hence more current.
Increasing the Min / Mid Voltage E1-10 / E1-08 settings will reduce the requirements of slip compensation acting upon output frequency, thus reducing the possibility of speed oscillation. The settings can be adjusted in 5 V steps improving the levels of low / medium speed running torque, thereby minimising undershoot.

No-load current E2-03 can also be adjusted for up to $50 \%$ of Motor nameplate rated full load current E2-01. This will ensure tighter control under empty car down conditions again minimising undershoot.

## SECTION J

## Fault Finding

The following section shows the common fault codes with a description of the fault and cause.

Modified constants

The following sheet is a print out of all the parameters that have been changed from the factory default values for this application.

